Binary Tree Maximum Path Sum
Problem statement
A path in a binary tree is a sequence of nodes where each pair of adjacent nodes in the sequence has an edge connecting them. A node can only appear in the sequence at most once. Note that the path does not need to pass through the root.
The path sum of a path is the sum of the node's values in the path.
Given the root of a binary tree, return the maximum path sum of any non-empty path.
Example 1:

Input: root = [1,2,3]Output: 6Explanation: The optimal path is 2 -> 1 -> 3 with a path sum of 2 + 1 + 3 = 6.
Example 2:

Input: root = [-10,9,20,null,null,15,7]Output: 42Explanation: The optimal path is 15 -> 20 -> 7 with a path sum of 15 + 20 + 7 = 42.
Constraints:
- The number of nodes in the tree is in the range
[1, 3 * 104]. -1000 <= Node.val <= 1000
My solution
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @return {number}
*/
var maxPathSum = function(root) {
let maxValue = Number.MIN_SAFE_INTEGER;
function traverse(node) {
if (!node) {
return 0;
}
const left = Math.max(0, traverse(node.left));
const right = Math.max(0, traverse(node.right))
maxValue = Math.max(maxValue, left + right + node.val);
// console.log(left, right, node.val, maxValue);
return Math.max(left, right) + node.val;
}
traverse(root);
// console.log(maxValue);
return maxValue;
};