Design Circular Queue
Problem statement
Design your implementation of the circular queue. The circular queue is a linear data structure in which the operations are performed based on FIFO (First In First Out) principle and the last position is connected back to the first position to make a circle. It is also called "Ring Buffer".
One of the benefits of the circular queue is that we can make use of the spaces in front of the queue. In a normal queue, once the queue becomes full, we cannot insert the next element even if there is a space in front of the queue. But using the circular queue, we can use the space to store new values.
Implementation the MyCircularQueue class:
MyCircularQueue(k)Initializes the object with the size of the queue to bek.int Front()Gets the front item from the queue. If the queue is empty, return-1.int Rear()Gets the last item from the queue. If the queue is empty, return-1.boolean enQueue(int value)Inserts an element into the circular queue. Returntrueif the operation is successful.boolean deQueue()Deletes an element from the circular queue. Returntrueif the operation is successful.boolean isEmpty()Checks whether the circular queue is empty or not.boolean isFull()Checks whether the circular queue is full or not.
You must solve the problem without using the built-in queue data structure in your programming language.
Example 1:
Input["MyCircularQueue", "enQueue", "enQueue", "enQueue", "enQueue", "Rear", "isFull", "deQueue", "enQueue", "Rear"][[3], [1], [2], [3], [4], [], [], [], [4], []]Output[null, true, true, true, false, 3, true, true, true, 4]ExplanationMyCircularQueue myCircularQueue = new MyCircularQueue(3);myCircularQueue.enQueue(1); // return TruemyCircularQueue.enQueue(2); // return TruemyCircularQueue.enQueue(3); // return TruemyCircularQueue.enQueue(4); // return FalsemyCircularQueue.Rear(); // return 3myCircularQueue.isFull(); // return TruemyCircularQueue.deQueue(); // return TruemyCircularQueue.enQueue(4); // return TruemyCircularQueue.Rear(); // return 4
Constraints:
1 <= k <= 10000 <= value <= 1000- At most
3000calls will be made toenQueue,deQueue,Front,Rear,isEmpty, andisFull.
My solution
class Node {
constructor(val) {
this.val = val;
this.next = null
}
}
/**
* @param {number} k
*/
var MyCircularQueue = function(k) {
this.head = null;
this.tail = null;
this.maxSize = k;
this.size = 0;
};
/**
* @param {number} value
* @return {boolean}
*/
MyCircularQueue.prototype.enQueue = function(value) {
if (this.size === this.maxSize) {
return false;
}
const newNode = new Node(value);
if (!this.head) {
this.head = newNode;
this.tail = newNode;
newNode.next = this.head;
this.size++
return true;
}
// Make newNode the current tails next node;
this.tail.next = newNode;
this.tail = newNode;
newNode.next = this.head;
this.size++
return true;
};
/**
* @return {boolean}
*/
MyCircularQueue.prototype.deQueue = function() {
if (!this.head) {
return false;
}
const nodeToDelete = this.head;
if (this.head) {
this.size--;
if (this.size === 0) {
this.head = null;
this.tail = null
} else {
this.head = this.head.next;
this.tail.next = this.head;
}
} else {
this.head = null;
this.tail = null
}
return true;
};
/**
* @return {number}
*/
MyCircularQueue.prototype.Front = function() {
if (this.head === null) {
return -1
}
return this.head.val;
};
/**
* @return {number}
*/
MyCircularQueue.prototype.Rear = function() {
if (this.tail === null) {
return -1
}
return this.tail.val
};
/**
* @return {boolean}
*/
MyCircularQueue.prototype.isEmpty = function() {
// console.log("this.size", this.size)
return this.size === 0
};
/**
* @return {boolean}
*/
MyCircularQueue.prototype.isFull = function() {
return this.size === this.maxSize;
};
/**
* Your MyCircularQueue object will be instantiated and called as such:
* var obj = new MyCircularQueue(k)
* var param_1 = obj.enQueue(value)
* var param_2 = obj.deQueue()
* var param_3 = obj.Front()
* var param_4 = obj.Rear()
* var param_5 = obj.isEmpty()
* var param_6 = obj.isFull()
*/