Skip to main content

Unique Morse Code Words

Problem statement

International Morse Code defines a standard encoding where each letter is mapped to a series of dots and dashes, as follows:

  • 'a' maps to ".-",
  • 'b' maps to "-...",
  • 'c' maps to "-.-.", and so on.

For convenience, the full table for the 26 letters of the English alphabet is given below:

[".-","-...","-.-.","-..",".","..-.","--.","....","..",".---","-.-",".-..","--","-.","---",".--.","--.-",".-.","...","-","..-","...-",".--","-..-","-.--","--.."]

Given an array of strings words where each word can be written as a concatenation of the Morse code of each letter.

  • For example, "cab" can be written as "-.-..--...", which is the concatenation of "-.-.", ".-", and "-...". We will call such a concatenation the transformation of a word.

Return the number of different transformations among all words we have.

Example 1:

Input: words = ["gin","zen","gig","msg"]Output: 2Explanation: The transformation of each word is:"gin" -> "--...-.""zen" -> "--...-.""gig" -> "--...--.""msg" -> "--...--."There are 2 different transformations: "--...-." and "--...--.".

Example 2:

Input: words = ["a"]Output: 1

Constraints:

  • 1 <= words.length <= 100
  • 1 <= words[i].length <= 12
  • words[i] consists of lowercase English letters.

My solution

/**
* @param {string[]} words
* @return {number}
*/
var uniqueMorseRepresentations = function(words) {
const morseMap = [".-","-...","-.-.","-..",".","..-.","--.","....","..",".---","-.-",".-..","--","-.","---",".--.","--.-",".-.","...","-","..-","...-",".--","-..-","-.--","--.."]

const memo = new Set();

for (const word of words) {

const morse = word.split("").reduce((acc, curr, index) => {
const charCurr = (word.charCodeAt(index) - 97)
acc += morseMap[charCurr]
return acc;
}, "")

if (!memo.has(morse)) {
memo.add(morse)
}
}

return memo.size
};