Skip to main content

Minimum Size Subarray Sum

Problem statement

Given an array of positive integers nums and a positive integer target, return the minimal length of a contiguous subarray [numsl, numsl+1, ..., numsr-1, numsr] of which the sum is greater than or equal to target. If there is no such subarray, return 0 instead.

Example 1:

Input: target = 7, nums = [2,3,1,2,4,3]Output: 2Explanation: The subarray [4,3] has the minimal length under the problem constraint.

Example 2:

Input: target = 4, nums = [1,4,4]Output: 1

Example 3:

Input: target = 11, nums = [1,1,1,1,1,1,1,1]Output: 0

Constraints:

  • 1 <= target <= 109
  • 1 <= nums.length <= 105
  • 1 <= nums[i] <= 105
Follow up: If you have figured out the O(n) solution, try coding another solution of which the time complexity is O(n log(n)).

My solution

/**
* @param {number} s
* @param {number[]} nums
* @return {number}
*/
var minSubArrayLen = function(s, nums) {

let left = 0;
let right = 0;
let sum = 0;
let min = Number.MAX_VALUE;
while (right <= nums.length) {
// console.log(left, right, sum);
if (sum >= s) {
min = Math.min(min, right - left);
sum -= nums[left];
left++;
} else {
sum += nums[right];
right++;
}
}
return min === Number.MAX_VALUE ? 0 : min;
};

/*

2 => (1 | 3, 1)
3 => (1 | 1, 2)
1 => (0 | 2, 4) // [1, 2, 4]
2 => (1 | 4)
4 => (0 | 3) // [4, 3]

*/