Skip to main content

Increasing Triplet Subsequence

Problem statement

Given an integer array nums, return true if there exists a triple of indices (i, j, k) such that i < j < k and nums[i] < nums[j] < nums[k]. If no such indices exists, return false.

Example 1:

Input: nums = [1,2,3,4,5]Output: trueExplanation: Any triplet where i < j < k is valid.

Example 2:

Input: nums = [5,4,3,2,1]Output: falseExplanation: No triplet exists.

Example 3:

Input: nums = [2,1,5,0,4,6]Output: trueExplanation: The triplet (3, 4, 5) is valid because nums[3] == 0 < nums[4] == 4 < nums[5] == 6.

Constraints:

  • 1 <= nums.length <= 5 * 105
  • -231 <= nums[i] <= 231 - 1
Follow up: Could you implement a solution that runs in O(n) time complexity and O(1) space complexity?

My solution

/**
* @param {number[]} nums
* @return {boolean}
*/
var increasingTriplet = function(nums) {
let first = Number.MAX_SAFE_INTEGER;
let second = Number.MAX_SAFE_INTEGER;

for (const num of nums) {
if (num <= first) {
first = num
} else if (num <= second) {
second = num
// console.log(first, second)
} else {
return true
}
}

// console.log(first, second)

return false;
};