Peak Index in a Mountain Array
Problem statement
Let's call an array arr a mountain if the following properties hold:
arr.length >= 3- There exists some
iwith0 < i < arr.length - 1such that:arr[0] < arr[1] < ... arr[i-1] < arr[i]arr[i] > arr[i+1] > ... > arr[arr.length - 1]
Given an integer array arr that is guaranteed to be a mountain, return any i such that arr[0] < arr[1] < ... arr[i - 1] < arr[i] > arr[i + 1] > ... > arr[arr.length - 1].
Example 1:
Input: arr = [0,1,0]Output: 1
Example 2:
Input: arr = [0,2,1,0]Output: 1
Example 3:
Input: arr = [0,10,5,2]Output: 1
Constraints:
3 <= arr.length <= 1040 <= arr[i] <= 106arris guaranteed to be a mountain array.
O(n) is straightforward, could you find an O(log(n)) solution?My solution
/**
* @param {number[]} arr
* @return {number}
*/
var peakIndexInMountainArray = function(arr) {
let peak = Number.MIN_SAFE_INTEGER;
for (let i = 0; i < arr.length; i ++) {
let curr = arr[i];
let left = arr[i - 1] || Number.MIN_SAFE_INTEGER;
let right = arr[i + i] || Number.MIN_SAFE_INTEGER;
// console.log(curr, left, right)
if (curr > left && curr > right) {
peak = Math.max(peak, i)
}
}
return peak
};