Convert Sorted List to Binary Search Tree
Problem statement
Given the head of a singly linked list where elements are sorted in ascending order, convert it to a height balanced BST.
For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
Example 1:

Input: head = [-10,-3,0,5,9]Output: [0,-3,9,-10,null,5]Explanation: One possible answer is [0,-3,9,-10,null,5], which represents the shown height balanced BST.
Example 2:
Input: head = []Output: []
Constraints:
- The number of nodes in
headis in the range[0, 2 * 104]. -105 <= Node.val <= 105
My solution
/**
* Definition for singly-linked list.
* function ListNode(val, next) {
* this.val = (val===undefined ? 0 : val)
* this.next = (next===undefined ? null : next)
* }
*/
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {ListNode} head
* @return {TreeNode}
*/
var sortedListToBST = function(head) {
return buildBST(head)
function buildBST(head) {
if (!head) {
return null;
}
const median = findMedian(head)
const root = new TreeNode(median.val)
root.right = buildBST(median.next);
let prev = findPrev(head, median);
// console.log("prev", prev, root, median)
if (prev) {
prev.next = null;
root.left = buildBST(head)
} else {
root.left = null
}
return root;
}
};
function findMedian(node) {
let fast = node;
let slow = node;
while (fast !== null) {
// console.log("fast", fast)
fast = fast.next;
if (fast === null) {
break;
}
fast = fast.next
slow = slow.next
}
return slow
}
function findPrev(head, tail) {
if (head === tail) {
return null
}
let prev = head;
while (prev.next !== tail) {
prev = prev.next;
}
return prev;
}