Skip to main content

Reverse Bits

Problem statement

Reverse bits of a given 32 bits unsigned integer.

Note:

  • Note that in some languages, such as Java, there is no unsigned integer type. In this case, both input and output will be given as a signed integer type. They should not affect your implementation, as the integer's internal binary representation is the same, whether it is signed or unsigned.
  • In Java, the compiler represents the signed integers using 2's complement notation. Therefore, in Example 2 above, the input represents the signed integer -3 and the output represents the signed integer -1073741825.

Example 1:

Input: n = 00000010100101000001111010011100Output:    964176192 (00111001011110000010100101000000)Explanation: The input binary string 00000010100101000001111010011100 represents the unsigned integer 43261596, so return 964176192 which its binary representation is 00111001011110000010100101000000.

Example 2:

Input: n = 11111111111111111111111111111101Output:   3221225471 (10111111111111111111111111111111)Explanation: The input binary string 11111111111111111111111111111101 represents the unsigned integer 4294967293, so return 3221225471 which its binary representation is 10111111111111111111111111111111.

Constraints:

  • The input must be a binary string of length 32

Follow up: If this function is called many times, how would you optimize it?

My solution

/**
* @param {number} n - a positive integer
* @return {number} - a positive integer
*/
var reverseBits = function(n) {

const reversed = `${"0".repeat(32 - n.toString(2).length)}${n.toString(2)}`.split("").reverse().join("")

let nums = 0;

for (let i = 0; i < 32; i++) {
if (parseInt(reversed[reversed.length - 1 - i])) {
nums += Math.pow(2, i)
}
}

return nums;
};